
Multi-Objective Optimal Model for Task Scheduling and Allocation in a 
Two Machines Robotic Cell Considering Breakdowns 

 
BAHAREH VAISI1, HIWA FARUGHI2, SADIGH RAISSI3 

Young Researchers and Elite Club1, Department of Engineering2, School of Industrial Engineering3  
South Tehran Branch Islamic Azad University1,3, University of Kurdistan2  

Tehran1,3, Sanandaj2  
IRAN  

st_b_vaisi@azad.ac.ir    h.farughi@uok.ac.ir    Raissi@azad.ac.ir 
 
Abstract: - This paper aimed to demonstrate a metaheuristic as a solution procedure to schedule a two-machine, 
identical parts robotic cell under breakdown. The proposed previous model enabled one to determine optimal 
allocation of operations to the machines and corresponding processing times of each machine. For the proposed 
mathematical model to minimize cycle time and operational cost, multi-objective particle swarm optimization 
(MOPSO) algorithm was provided. Through some numerical examples, the optimal solutions were compared 
with the previous results. MOPSO algorithm could find the solutions for problems embeds up to 50 operations 
in a rationale time. 
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1 Introduction 
Almost all flexible manufacturing systems are 
comprised of robots, CNC machines and other 
relevant stand-alone systems such as inspection 
machines, instrumentation devices, computers and 
sensors. The responsibility of robot is to pick-up 
products, load/unload machines and also material 
transposition inside the robotic cell.  

To improve the system’s productivity, there are 
several researches about the sequencing of machine 
feedings and robot movements in robotic cells. 
Machine breakdowns and transportation times so far 
have been relaxed while they may result in changing 
the solutions.  

Although in most of the previous researches 
conducted in the field of robotic manufacturing cells 
such as [28], [29], [17], [30], [7], [15], [6], [16], 
[10], [8] and [3], scheduling is done based on a 
single criterion, the most important results of multi 
criteria scheduling were surveyed in [14]. Bi-criteria 
scheduling model in a two-machine robotic cell 
which produces identical parts was presented by 
Gultekin et al. [11]. They assumed that, the 
allocations of operations and their processing times 
are decision variables. Bi-objective mixed integer 
programming scheduling model in a cyclic robotic 
cell with processing time windows and non-
Euclidean travel times was developed in [9]. ε-
constraint method was proposed to solve the model. 
For studying other bi objective robotic cell 
scheduling papers, the reader is referred to [21], [2], 
[18], [12], [4], [33] and [24]. 

In a new paper a dynamic scheduling problem 
was addressed by Ma et al. [23]. In their robotic 
cell, more than one new jobs were arrived and 
should be scheduled immediately. The problem was 
formulated as a mixed integer programming model 
then a hybrid algorithm was proposed to search for a 
near-optimal solution. 

One of the basic assumptions in aforementioned 
studies was that, there isn’t any need for 
maintenance because robots and machines never 
experience failure. Moreover, in none of the 
previous studies, availability of robotic cell was 
recommended as a constraint, because in all of them 
machine/robot were assumed to be available. But in 
real world it is impossible, so to make the robotic 
cell scheduling issue more practical, no failure 
assumption for the machines was relaxed (see 
papers [26], [27] and [13]).  

In this study, we developed a stochastic model 
for an unreliable robotic cell under different 
operational conditions comprising failures and 
preventive maintenance. The system was served by 
a single gripper robot for load/load identical parts as 
well displacements. Considering condition-based 
maintenance and its impact on the processing time 
of operations in a two-machine robotic cell, the 
focus of study is on S2 as the most commonly used 
robot’s move cycle. Additionally, robotic cell’s 
availability was considered as a constraint. As 
availability improvement will increase the output of 
the robotic cell, making an appropriate balance 
between cycle time and total operational cost, 
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considering breakdowns, are our objective in this 
study. 

This paper is presented as follows: in section 2 
the problem definition is demonstrated. In section 3 
MOPSO as a solution procedure for the S2 cycle is 
given and through numerical examples sensitivity 
analysis about results and discussion based on the 
previous proposed model is revealed in section 4. 
Finally, conclusion is presented in section 5. 

 
 

2 Problem Statement 
Decreasing production cost and rising quality is 
manageable by applying a flexible system. Such 
systems, consist of one or more machines, supported 
by a robot for load/load of parts. A typical in-line 
two-machine robotic cell based on [11] is shown in 
Fig.1. 

 
Fig.1. A typical layout for a 2-machine in-line 
robotic cell  

In the production system there are two identical 
CNC machines that each of which has no priority in 
operation. Typically, in a 2-machine cell, three 
cycles, S1, S2 and S12S21, is being applied to part 
displacements. As mentioned before, we focused on 
the S2 cycle because it is a commonly used cycle 
with more complexity rather than the others. As a 
well-known rule, the activity sequence of S2 cycle is 
coded by 	〱଴ଵ	ܣଶଷ	ܣଵଶ	ሾ1ሿ. Where ܣ௣௤	denotes the 
robot activity sequence from station,݌, to station ݍ.  

The literature revealed that, scheduling of 
flexible manufacturing cells commonly was carried 
out in deterministic conditions and little research 
has done on this issue under uncertainty. None of 
published papers has focused on scheduling-
allocation optimization in the presence of random 
failures. For the scheduling-allocation optimization, 
the assumptions, parameters and proposed 
mathematical model are equivalent to [34]. In this 
study, we want to examine another solution method 
and compare the results. 
 
 

3 Solution Methodology 
In this paper, we applied MOPSO algorithm to 
generate different sets of non-dominated solutions 

for the model. Then, results were compared with the 
results of ∊-constraint approach in [34].   
 
3.1 MOPSO 
The simplicity, low computation cost and increasing 
popularity of Multi-Objective Particle Swarm 
Optimization, enhance its efficiency to solve simple 
as well as complex problems [22]. Before describing 
MOPSO algorithm, the particle swarm optimization 
(PSO) needs to be presented, shortly.  

PSO is a computational method to optimize a 
problem by iteratively trying to improve a candidate 
solution with regard to a given measure of quality. 
PSO is originally attributed 
to Kennedy, Eberhart and Shi and was first intended 
for simulating social behavior as a stylized 
representation of the organisms movements in a 
bird flock or fish school[19], [31], [20]. The analogy 
of PSO with evolutionary algorithms makes evident 
the notion that using a Pareto ranking scheme could 
be the straightforward way to extend the approach to 
handle multi objective optimization problems [5]. In 
PSO, first, some predefined particles are generated 
incidentally in the solution space. The situation of 
each particle represents an order of alternatives. 
Besides, the fitness function value for algorithm is 
given identically as the determined score for the 
considered problem. In each iteration, each particle 
should be moved based on other particles situations. 
Two types of solutions have to be updated in each 
iteration of this algorithm. The first variable which 
is denoted by ܲݐݏ݁ܤ is the best permutation 
experienced by each particle while the second one 
named as ݐݏ݁ܤܩ is the best experienced 
arrangement by all particles. Particles movement 
direction and their final position in each iteration 
will be calculated according to the following 
equations [32]: 
௜ܸ ሺݐ ൅ 1ሻ ൌ .ݓ ௜ܸ ሺݐሻ ൅ ܿଵ ଵݎ ൫ܲݐݏ݁ܤ௜	ሺݐሻ െ ௜ܺ		ሺݐሻ൯

൅ ܿଶݎଶ ൫ݐݏ݁ܤܩሺݐሻ െ ௜ܺ		ሺݐሻ൯ 
(19)

௜ܺ ሺݐ ൅ 1ሻ ൌ ௜ܺ ሺݐሻ ൅ ௜ܸ ሺݐ ൅ 1ሻ (20)
To control the impact of the previous history of 

velocities on the current velocity of a given particle, 
w (Inertia Weight) is employed. c1 and c2 are 
learning factors and are usually defined as constants. 
In order to apply the PSO strategy for solving multi-
objective optimization problems, it is obvious that 
the original scheme must be modified. Clearly, the 
solution set of a problem with multiple objectives 
does not consist of a single solution (as in global 
optimization).  

Instead, in multi-objective optimization, we aim 
to find a set of different solutions (the so-called 
Pareto optimal set) [25]. 
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4 Test Problems, parameter Tuning 
and Software Implementation 
A set of problems with different sizes from [34] are 
considered to test the performance of MOPSO 
method in comparison with ∊-Constraint in this 
section.  

Example. Let us consider three different Test 
Problems including different groups of operations 
with their processing times in a 2-machine robotic 
cell for producing identical parts. Values are given 
in Table 2. The main difference between these test 
problems is the number of operations (i.e. group 
size). The parameters and user defined values for 
the considered robotic cell are presented in Table 1. 
It should be noted that, the same tool is used for all 
of these operations and we assumed these parameter 
values are constant. 
Table1.  Characteristics of required parameters 

C୔୑=35 B=80 μ=2 
C୭=50 k=4 λ=3 
C୘୓୓୐=45 C=7 ∊=1 
A=40 H=15 δ=2 
t୨,୔୑	=7 t୨,େ୑	=10  

 
4.1 MOPSO Results 
To express the performance of the proposed model 
to solve the problems, we test the proposed MOPSO 
on a set of instances in Table 2 with MATLAB 
software and show the results in Table 4. It should 
be noted that, MOPSO algorithm was run on a 
portable PC with MS-Windows Vista, 3.0 GB of 
RAM, and 2.0 GHz Core 2 Duo CPU. Parameter 
setting for MOPSO algorithm was based on Table 3 
and the algorithm procedure is shown in Fig.2. In 
Fig.3, we represent the best results of feasible region 
for objective functions in Test Problems based on 
MOPSO algorithm. Similar to the previous paper 
[34], as an instance, regarding the machine’s 
generated degradation level, we demonstrate the 
allocation of operations to them for the Example 
Number 9 (see Table 2) in Table 5. 

 
Table3. The MOPSO parameter setting 
Population size  50 
Repository Size  50 
Personal Learning Coefficient   1 
Global Learning Coefficient  2 
Grid Inflation  0.1 
Number of Grids  5 
 Leader Selection Pressure  2 
 Repository Member Selection Pressure   2 
 Maximum Number of Iterations 100 

 

 
Fig.2. Multi-Objective Particle Swarm Optimization 
flowchart 
 
Table4.  The MOPSO results (lower bounds) 
through designated test problems 
Example # Min cost Min S2 Cycle 

time 
Elapsed time in 
seconds 

1 1655.47 22 20.19 
2 2555.31 27 23.49 
3 2702.28 29 22.04 
4 3252.61 34 20.72 
5 4200.71 44 23.23 
6 4851.59 50 21.26 
7 5201.86 54 19.81 
8 5551.34 57 25.11 
9 5700.28 59 25.19 
10 8049.49 82 24.86 
11 11350.03 115 27.03 
12 15648.31 158 31.08 

 
Table 5.  Allocation of operations for case 9 in the 
test problems based on MOPSO algorithm 

Machine # Allocated operations # 
1  1, 5, 8, 10, 12, 13, 14, 18 
2  2, 3, 4, 6, 7, 9, 11, 15, 16, 

17 
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4.1.1 Comparison Metrics 
We used diversity and spacing metrics to provide a 
basis for assessing the relative performance of 
MOPSO as a multi-objective optimization 
algorithm. The metrics definition is being 
summarized in Table 6: 
 
Table 6.  The comparison metrics 

Spacing metric: 
 
(SM) 

dି	 ൌ
∑ d୧
୬
୧ୀଵ

n
 

SP ൌ ඨ
∑ ሺdି	 െ d୧ሻଶ୬
୧ୀଵ

n െ 1
 

Diversity metric: 
 
(DM) 

DM ൌ ඩ෍maxሺ‖x୧ െ y୧‖ሻ
୬

୧ୀଵ

 

 
 

Where ‖x୧ െ y୧‖ is Euclidean distance between 
two non-dominated solutions x୧ and y୧	[35]. 
Comparison metrics were calculated for all test 
problems (see Table 2) over 10 runs of MOPSO 
algorithm. Table 7 is presented the diversity and 
spacing metrics obtained for small, large and big 
size instances. 

 
4.2 Statistical analysis 
To compare the outcome of both Pareto optimal 
solution methods (∊-constraint and MOPSO), we 
define objective functions result and elapsed time 
required by each method as the criteria. The criteria 
values have been summarized in Table 8. 

 
4.2.1 Comparison between Solution Methods  
To compare the performance of ∊-constraint method 
with multi-objective particle swarm optimization 
algorithm, firstly, ∊-constraint method’s minimum 
cost was measured against that of MOPSO 
algorithm. The first objective function (i.e. cost) in 
exact solution is consistently less than meta-
heuristic solution, regarding Fig.4. In considered 
Test Problems (see Table 2), the difference between 
objective function values is at least 15 and at most 
122 currencies.  

 
Fig.4. Solution procedures comparison of the first 
objective function in designated Examples 

 
In the second objective function (i.e. S2 cycle 

time) a statistical significant difference between 
these two solution methods is not observed and 
precisely describing, the test of equality between 
these solution procedures based upon Test Problems 
result, is significant at 99.7% significance level with 
190 as non-parametric Mann-Whitney statistics and 
p-value of 0.4728, by applying MinitabTM. 
Consequently, there is no difference between the 
two solutions method behavior in terms of S2 cycle 
time.  

From the standpoint of elapsed time, the average 
elapsed time for running MOPSO algorithm is 
repeatedly lower than that of ∊-constraint method, 
concerning Fig. 5. In the considered Test Problems 
(see Table 2), the smallest difference between 
elapsed time amounts is 1 and the maximum 
difference between elapsed time values is 3569 
Seconds.  

 
Fig.5. Solution procedures comparison of the 
elapsed time in designated Examples 
 
 

5 Conclusion 
The studied system consists of a two-machine 
robotic manufacturing cell which produces identical 

parts and the robot moves cyclic on the basis of S2 
cycle. This robotic cell faces failures and repairs. 
This study aimed to demonstrate other solution 
procedure for the previous proposed model for the 
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defined above system and a generated set of Pareto 
optimal solutions based on MOPSO was presented. 
The link between operating conditions decisions in 
robotic manufacturing cells and maintenance 
decisions through following up maintenance task, 

will improve time and operational costs 
simultaneously.  

We believe that, the model and solution 
procedures could be extended to the robotic cell 
considering robot breakdowns or to the dual-gripper 
robot.  

 
Table2.  Test problems 

Test problem Group size Example # Processing times 

1 
(Small size) 

(5-10) 
operations 

1 
2 
3 

10, 8, 7, 4, 3. 
10, 7, 13, 8, 5, 2, 5. 
7, 4, 3, 7, 4, 8, 10, 3, 7. 

2 
(Large size) 
 

(10-18) 
operations 

4 
5 
6 
7 
8 

10, 8, 7, 4, 3, 7, 4, 8, 10, 3. 
10, 8, 7, 4, 3, 7, 4, 8, 10, 3, 7, 4, 8. 
10,  7, 13,  8, 5, 2, 5, 4, 10, 7, 4, 8, 10, 3. 
10,  7, 13,  8, 5, 2, 5, 4, 10, 10, 8, 7, 4, 3, 7. 
10,  7, 13,  8, 5, 2, 5, 4, 10, 10, 8, 7, 4, 3, 7, 5, 2. 

3 
(Big size) 

(18-50) 
operations 

9 
10 
 
11 
 
12 

10,  7, 13,  8, 5, 2, 5, 4, 10, 10, 8, 7, 4, 3, 7, 5, 2, 3. 
10,  7, 13, 8, 5, 2, 5,  4, 10, 10,  8, 7,  4,  3, 7, 4,  8, 10, 3, 10, 
8, 7, 4, 3. 
10,  7, 13, 8, 5, 2, 5,  4, 10, 10,  8, 7,  4,  3, 7, 4,  8, 10, 3, 10, 
8, 7, 4, 3, 10, 8, 7, 4, 3, 7, 4, 8, 10, 3, 2. 
10,  7, 13, 8, 5, 2, 5,  4, 10, 10,  8, 7,  4,  3, 7, 4,  8, 10, 3, 10, 
8, 7, 4, 3, 10, 8, 7, 4, 3, 7, 4, 8, 10, 3, 2, 10, 8, 7, 4, 3, 7, 4, 8, 
10, 3, 1, 2, 3, 7, 9. 

 
 

 

Table7.  Computational results for comparison metrics in test problems 
Test Problem Example # DM SM Test 

Problem 
Example # DM SM 

Small size 1 153.0380 0 Large size 7 270.2473 0 
2 190.4197 0 8 279.2708 0 
3 195.6059 0 Big size 9 283.0309 0 

Large size 4 214.2844 0 10 335.6310 0 
5 243.2365 0 11 398.7655 0 
6 260.9949 0 12 467.9246 0 

 
Table8.  Summary of the objective functions result and elapsed time for Pareto optimal solutions 

 Criteria  
Example 
# 

Min cost Min  S2 Cycle time Elapsed time (in seconds) 
∊-
constraint 

MOPSO ∊-
constraint 

MOPSO ∊-
constraint

MOPSO 

1 1683.457 1655.4687 23 22 22 20.185975 
2 2601.222 2555.3125 30 27 18 23.488227 
3 2720.021 2702.2802 35 29 68 22.036794 
4 3267.914 3252.6064 44 34 47 20.715749 
5 4259.988 4200.7082 49 44 409 23.224983 
6 4919.679 4851.5939 60 50 824 21.258663 
7 5223.75 5201.8659 60 54 114 19.805676 
8 5623.888 5551.3398 59 57 69 25.112806 
9 5801.277 5700.2773 59 59 3600 25.191318 
10 8131.095 8049.487 84 82 1211 24.857310 
11 11373.37 11350.0269 122 115 3600 27.025602 
12 15770.43 15648.3065 158 158 3600 31.076154 
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Example1

	

Example 2 Example3 

Example 4 

	

Example	5 Example	6	

Example	7	 Example8

	

Example 9 

 

Example 10 

 

Example	11 Example	12	

Fig.3. Results of feasible region for objective functions in designated Examples based on MOPSO algorithm 
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